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Abstract

Some modern scaling and fractal approaches to the characterization of surface roughness are under
consideration[ A new mathematical model of a multilevel pro_le suitable for ~exible simulation of roughness
is presented as a development from these approaches[ The iterative construction of the model is described[
It is shown that the pro_le is a hierarchical structure with self!a.ne and fractal features[ Its geometrical
properties are studied both analytically and numerically\ and some of them are proved to be of the
renormalization type[ The pro_le contour length can be _nite or in_nite depending on the chosen values of
the structural parameters[ Some characteristics including the bearing curve and the upper volume function
of the pro_le and the corresponding prestructures are calculated[ Þ 0888 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Surface topography plays a signi_cant role in tribology\ i[e[\ in problems of friction\ wear\
lubrication and contact[ This is the reason why the problem of analysis of rough surfaces attracts
the attention of engineers and applied mathematicians[ Historically\ the following engineering
parameters\ statistical in nature\ were used for the characterization of surface roughness] "i# the
root mean square "rms# height s^ "ii# the rms slope s1

m\ and "iii# the rms curvature s1
k of the surface[

These parameters\ which are included in national standards of a number of countries\ can be
obtained for real surfaces using contact pro_lometry\ scanning electron microscopy and other
experimental methods[

However\ it was realized later that the topography of engineered surfaces is too complex to be
described completely by a few parameters[ Thus\ it was found that roughness has a multiscale
nature and requires sophisticated mathematical techniques for its description[
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Statistical modelling based on random _eld theory is the standard approach to surface geometry
characterization[ One of the _rst attempts to model the distribution of heights of surface asperities
was presented by Longuet!Higgins "0864a\ b#^ further development was provided by Nayak "0860#[
These authors and most other users of classical random _eld theory assumed that the functions of
surface model are di}erentiable[ In particular\ this implies that limiting values for s1

m and s1
k should

exist as the sample interval tends to 9[ However\ it turned out that such limiting behaviour is in
contradiction with the results of advanced investigations of surfaces[ For example\ the exponential
behaviour of the auto!correlation function implies that the engineering parameters should tend to
in_nity rather than to constant values when the sampling interval is in_nitely reduced "see\ e[g[\
Greenwood\ 0881#[ Sayles and Thomas "0867# showed that the pro_les of a large number of both
natural and arti_cial surfaces have the following form of the spectral density G"v# � C:va\ where
a ¼ 1[ It follows from this that all wavelengths are equally represented in the pro_le and that there
exists no characteristic scale^ in other words\ after arbitrary magni_cation roughness looks like
before[ Moreover\ it was found that the values of engineering parameters depend on the measure!
ment scale\ i[e[\ these parameters are scale!dependent "Thomas\ 0871^ Madjumdar and Bhushan\
0889^ Greenwood\ 0881#[

The fractal approach was introduced as an attempt to give a scale!invariant characterization of
surface topography[ The idea of fractality of roughness was experimentally veri_ed on real surfaces
as well as when applied to mathematically simulated pro_les "see\ e[g[\ Mandelbrot et al[\ 0873#[

The term fractal was coined by Mandelbrot "0866\ 0872#[ Roughly speaking\ fractals can be
de_ned as sets with non!integer fractal dimension[ Naturally\ the term fractal dimension requires
a precise de_nition[ Mandelbrot "0866\ 0872# argues that the language of fractal geometry often
describe physical phenomena better than the language of smooth classical objects[ Now fractal
geometry\ which is a branch of mathematics dealing with highly irregular sets\ is one of those
modern topics\ whose results have had a great impact on researchers in various areas of science[

Evidently\ roughness of the surface of a body has a great in~uence on stress _elds that arise
when two deformable bodies are pressed together[ Analysis of the e}ect of roughness on the
contact interaction of solids has attracted wide attention "see\ e[g[\ Johnson\ 0874#[ One of the
most popular models for studying contact of rough bodies is the Greenwood and Williamson
"0855# model based on the use of the Hertz theory[ However\ Majumdar and Bhushan "0880#
criticised the Greenwood and Williamson "GW# model as a non!scale!invariant[ Currently\ the
development of models of contact between nominally ~at fractal rough surfaces presented by
Borodich and Mosolov "0880\ 0881# for the Cantor pro_le is an active area of research[ Various
contact problems for nominally ~at fractal punches were considered by Borodich and Onishchenko
"0882#\ Warren and Krajcinovic "0884\ 0885a\ b# and Warren et al[ "0885#[ All these models
consider the one!level Cantor pro_le[ It was noted by Borodich and Onishchenko "0882# that
models incorporating multilevel self!a.ne pro_les\ when the asperities of the next generation lie
on the tops of those of the previous level or when the even and odd generations are directed upwards
and downwards correspondingly\ could give much more natural rough pro_les[ Nevertheless\ there
has been no progress in study of such models yet[ It is necessary to note that a multilevel self!
a.ne structure were used by Liu "0874# and Kaplan et al[ "0876# for surface characterization in
application to metalÐelectrolyte interface[ However\ their construction procedure led to unbounded
pro_le height in most of the considered examples[ The present paper is to rectify this situation[

In this paper\ the authors propose to study the bounded similarity of surface roughness on



F[M[ Borodich\ D[A[ Onishchenko:International Journal of Solids and Structures 25 "0888# 1474Ð1501 1476

iteratively generated rough pro_les[ The new multilevel pro_le model\ described in the paper\ is
suitable for the ~exible modelling of roughness[ The pro_le is easily simulated and drawn\ which
is important for visual analysis[

It is known that fractal dimension is not a compressive geometric parameter that could charac!
terize alone the behaviour of contacting rough bodies "see\ e[g[\ Borodich and Onishchenko\ 0882#[
Moreover\ as we will see below the employment of the fractal approach in the study of surfaces
has several drawbacks[ The proposed model can be both fractal and non!fractal depending on
values of the structural parameters[ Regardless of this\ the model pro_le remains rough and
possesses certain self!a.ne properties[ The iterative regular construction of the pro_le allows us
to analyse its prestructures "prefractals# of arbitrary generation[

The paper is organised as follows] in Section 1 we recall some relevant de_nitions and methods
attributed to fractal geometry in application to the modelling of rough surfaces and underline the
di}erence between mathematical and physical fractals[ We consider the properties of self!similarity
and self!a.nity of surface pro_les and discuss some approaches for the fractal description of
roughness involving Brownian surfaces and Weierstrass type functions[ In Section 2 a new math!
ematical model suitable for the ~exible simulation of rough pro_les is presented[ The iterative
construction of the model pro_le is described[ It is shown that the pro_le is a hierarchical structure
with certain self!a.ne and fractal features[ Then\ geometrical properties of the pro_le are studied
both analytically and numerically\ and some of them are proved to be of the renormalization type[
Some characteristics of the pro_le and corresponding prestructures are calculated\ in particular
the bearing curve and the upper volume function[

1[ Fractal description of rough surfaces

During the last two decades methods of fractal geometry were of great interest as a possible tool
for describing surface roughness[ Mandelbrot et al[ "0873# presented the results of experimental
studies of fracture surfaces of a selection of steel samples[ They argued that the irregularity of
these fracture surfaces exhibits fractal characteristics and that\ at least on the mesoscopic scale\
these surfaces have irregularities of all scales[ Afterwards\ there were numerous papers published
in the _eld[ Below we consider various approaches to the fractal analysis of surface topography[

1[0[ Mathematical de_nition of fractal

What is a fractal< Greenwood "0881# noted that Mandelbrot is somewhat reluctant to de_ne
{fractals| or {fractal dimension| preferring to o}er examples[ This indeed is the case "see\ e[g[\
Mandelbrot\ 0866\ 0879\ 0872#[ Nevertheless\ we use the de_nition "Mandelbrot\ 0866\ 0872#\
according to which a set in a metric space is called a fractal set if the Hausdor}ÐBesicovitch
dimension of the set is greater than its topological dimension[ Note that this is the de_nition of
mathematical fractals[

Let us recall some de_nitions which are used in fractal modelling[
Let X be a compact metric space and O be the totality of open balls in X[ The Hausdor} s!

measure of a subset S W X is de_ned for s − 9 as the following limit
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mH"S\ s# � lim
s:9¦

inf
G$O 6s

V$G

"diam V#s ] S U k
V$G

V\ diam V ¾ d7 [
Here G|s are _nite or denumerable subsets of O[ It was proved that there exists a value s9 such that

mH"S\ s# � 6
�\ for s ³ s9\

9\ for s × s9[
"0#

The Hausdor} dimension of the set S\ denoted by dimH S\ is the number s9 such that "0# holds[
Unfortunately\ the calculation of the Hausdor} dimension of mathematical objects often

demands a lot of e}ort[ Even to _nd some estimations of the dimension\ it is necessary to overcome
a number of rather complex mathematical di.culties "see\ e[g[\ Mauldin and Williams\ 0875#[ This
called for the use of other de_nitions of dimension which are useful in applied mathematics for the
characterization of fractal objects[

One such alternative is the box dimension\ whose de_nition is usually attributed to PontrjaginÐ
Schnirelman and Kolmogorov[ The analytical calculation of the box dimension is usually easier
since the corresponding de_nition of this dimension involves coverings by spheres of equal radii[

Let E be the Euclidean dimension of the space in which a set S is embedded[ For d × 9\ let N"d#
be the smallest number of E!dimensional balls or cubes of diameter d needed to cover the set S[
The box counting dimension or box dimension\ denoted by dimB S\ can be de_ned if the following
limit exists

dimB S � lim
d:9¦

log N"d#
−log d

[ "1#

It can be proved that dimB S does not change if one takes N"d# as] "i# the smallest number of d!
cubes that cover S^ "ii# the number of d!mesh cubes that intersect S^ "iii# the smallest number of
sets of diameter at most d that cover S^ "iv# the largest number of disjoint d!balls with centres in
S[ In general\ one can de_ne two numbers\ called the upper and lower box dimensions[ To calculate
these numbers\ one has to replace the expression lim in the above de_nition by lim sup and lim inf\
respectively[ If the upper and lower dimensions are equal to each other\ then the true limit exists\
and this value is de_ned as box dimension "see\ e[g[\ Falconer\ 0889#[

Unfortunately\ the box dimension is not always equal to the Hausdor} dimension[ For example\
the set S � "9\ 0\ 0:1\ [ [ [ \ 0:n [ [ [# has unequal values for the Hausdor} and box dimensions]

dimH S � 9 � dimB S � 0:1[

However\ it can be proved that dimH S ¾ dimB S[
There are also many other names which are often used for the fractal dimensions[ Several

examples of these are the Bouligand\ Minkowski\ self!similarity\ Frostman and packing dimen!
sions[ Various methods can be employed to calculate these dimensions for a mathematical fractal
"see\ e[g[\ Falconer\ 0889^ Tricot\ 0884#[ Sometimes\ when using di}erent de_nitions\ di}erent
values of the fractal dimension can be obtained[ At the same time\ it was shown that some of the
above mentioned de_nitions are mathematically equivalent to each other[

As a simple alternative to the Hausdor} measure\ we can introduce the s!measure ms of a set as
the following limit
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ms"S# � lim
d:9¦

N"d#ds[ "2#

and de_ne the box dimension as the value s � D such that ms"S# has a jump from 9 to� similar
to the behaviour of mH"S\ s# in "0#[ However\ ms is not a s!additive measure[ One consequence of
this\ however\ is that box dimensions have a number of unfortunate properties\ and can be
awkward to handle mathematically "Falconer\ 0889#[ On the other hand\ the di.culties involved
with calculating the Hausdor} dimension are the reason for the opinion that the Hausdor}
dimension has no practical application in the study of curves originated in other sciences] physics\
biology or engineering "Tricot\ 0884#[

1[1[ Physical concept of fractals

Evidently\ it is impossible to carry out the scaling procedure for any real physical object down
to in_nitely small scales[ Hence\ the mathematical concept of the Hausdor} measure is applicable
only to mathematical models of objects rather than to the objects themselves and\ of course\ the
Hausdor} dimension cannot be obtained by experimental procedures[ In this sense there are no
actual fractal objects in nature[

For physical objects the box dimension cannot be calculated analytically but it is estimated by
experimental or numerical calculations[ However\ various errors can arise during such numerical
calculations[

There is no canonical de_nition of physical fractals and there are numerous methods for the
practical estimation of the fractal dimension of an object[ The cluster fractal dimension is taken
as the _rst example of a physical fractal dimension de_nition[

Let a whole cluster be imagined as consisting of elementary parts of the size d�[ An object can
be modelled as a fractal cluster with dimension D when the model considers scales R such that
d� ³ R ³ D�\ where d� and D� are the upper and lower cuto}s for the fractal representation[

To get the value D of the dimension\ the considered region is discretized into cubes with side
length d�[ Then the smallest number of E!dimensional cubes needed to cover the cluster "N"d�##
is counted[ One says that the cluster is fractal if the numbers N"d�# satisfy the so!called number!
radius relation for di}erent sizes of the considered region of the cluster R

N"d�# ¼"R:d�#D\ d� ³ R ³ D�[ "3#

The value of D is estimated as the slope of linear growth of ln"N"d�## plotted against ln"R#[ The
power D is usually called the cluster dimension or mass dimension[

The name of the latter term can be explained in the following way[ Let some {mass| M"S�# be
assigned to the elementary particle S� of the size d�[ Then instead of the s!measure ms of the cluster
S used in the de_nition of box dimension one has the {mass| of the whole cluster
M"S# � N"d�#M"S�#[

As an example of the use of the de_nition\ let us consider a pro_le which is imaged on a computer
screen as a union of points "pixels# of the size d�[ Then we can obtain a computerised estimation
of the number of pixels N"d�# forming the line and lying inside a circle or a square box of radius
R centred at a point x[ If the pro_le has fractal properties then repeating the procedure of
estimation for di}erent values of R will always give relation "3#[
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Another de_nition of the physical fractal dimension is based on the Richardson method[ This
method uses dividers which are set to a prescribed opening d "Mandelbrot\ 0872#[ Moving with
these dividers along the contour so that each new step starts where the previous step leaves o}\
one obtains the numbers of steps N"d#[ The contour is said to be of fractal nature if by repeating
this procedure for di}erent values of d the relation

N"d# ½"d#−D "4#

is obtained in some interval d� ³ d ³ D� of sizes d[ The power D is usually called the Richardson
dimension DR[

The last method which we would like to mention is the following[ We cover the contour S by a
grid of squares of size di[ Then successively dividing each initial square of the grid into four
subsquares of size di¦0 � di:1 and calculating the number of subsquares which contain points of
S\ we may obtain the relation "4# which holds in some interval of sizes d[ In this case\ the power
D is usually called the physical box dimension DB[

We see that various methods are utilized to estimate the fractal dimension of a physical object[
However\ the notion fractal dimension is not well!de_ned in that the relative value does depend
on the approach used[ Indeed\ only for the mathematical box dimension of a fractal set S it is
proved that dimB S is the same when using various speci_c schemes of covering "see\ e[g[
Falconer\0889#\ while for physical fractals the estimations of the fractal dimension inevitably
involve various techniques\ distinct scale ranges\ and various computation rules[ Therefore\ the
obtained values can di}er strongly and it is unlikely that they could be fruitfully compared for
distinct objects[ Thus\ even in the case of physical objects of a similar nature\ it would be wrong
to consider fractal dimension of these objects as their speci_c property without referring to the
estimation technique involved[

1[2[ Self!similarity and self!af_nity of surfaces

Let us recall that a one!to!one mapping M of a plane p onto a plane p? is called a similarity
mapping with coe.cient l × 9\ or simply a similarity\ when the following property holds] if A and
B are any two points of p\ and A?\ B? are their images under M\ then =A?B?= � l=AB= "see\ e[g[\
Modenov and Parkhomenko\ 0854#[

It is known that any similarity transformation of a plane is a homogeneous "isotropic# dilation
of coordinates x? � lx\ z? � lz up to a rotation and translation[

A set S is called statistically self!similar if under homogeneous scaling with the coe.cient l\
0 × l × 9\ it is identical from the statistical point of view to the set S? � lS[

In practice\ it is impossible to verify that all statistical moments of the two distributions are
identical[ Frequently\ a set S is said to be self!similar if only a few moments do not change under
scaling "see\ e[g[\ Voss\ 0874#[

A one!to!one mapping M of a plane p onto a plane p? is called an a.ne mapping\ if the images
of any three collinear points are collinear in turn "see\ e[g[\ Modenov and Parkhomenko\ 0854#[
In general\ an a.ne transformation of a plane may be given in any coordinate system as a non!
degenerative linear transformation[ In practical studies of rough surfaces\ one often considers a
particular a.ne mapping\ with anisotropic scaling\ that is given coordinatewise by
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x? � lx\ z? � lHz[

Here z is a graph of a surface pro_le and H is some scaling exponent[
One says that a fractal is self!a.ne if it is invariant from the statistical point of view under

quasi!homogeneous "anisotropic# scaling[
It is possible to show that usually a quasi!homogeneous transformation is a particular case of

Lipschitz homeomorphism "Borodich\ 0883\ 0884#[ The Hausdor} dimension of a set S does not
change under the action of the Lipschitz homeomorphism L\ i[e[\

dimH S � dimH L"S#[ "5#

The ideas of self!similarity and self!a.nity are very popular in studying surface roughness
because experimental investigations show that usually pro_les of vertical sections of real surfaces
are statistically similar to themselves under repeatedly magni_cations^ however\ the pro_les should
be scaled di}erently in the direction of nominal surface plane and in the vertical direction[ The
self!a.ne fractals were used in a number of papers as a tool for description of rough surfaces
"Majumdar and Tien\ 0889^ Majumdar and Bhushan\ 0889^ Moreira et al[\ 0883^ Tricot et al[\
0883^ Schmittbuhl et al[\ 0883\ 0884^ Hansen et al[\ 0884^ Plouraboue� et al[\ 0884^ Lopez et al[\
0884^ Blackmore and Zhou\ 0885^ Vandembroucq and Roux\ 0886#[

Two standard examples of self!a.ne fractals are the trace of the fractional Brownian motion
and the Weierstrass function[ The former is a statistical fractal\ while the latter is a deterministic
fractal[ We will consider them below[

1[3[ Brownian surfaces and random fractals

Fractional Brownian motion "FBM# is a generalisation of the ordinary Brownian process[
Fractional Brownian processes are widely used in creating computer!generated surfaces\ in par!
ticular landscapes[ For example\ a pro_le can be constructed as a graph of 0!D FBM VH"x# of
index H\ i[e[\ we have

z � z"x#\ z"x# � VH"x#

where x is taken as the time and z is the random variable of the single valued function VH"x# with

ððVH"x¦d#−VH"x#Ł1Ł ½ d1H\ 9 ³ H ³ 0 "6#

or\ in nonstrict notation\

=VH"x¦d#−VH"x# = ½ dH[ "7#

It is known "see\ e[g[\ Falconer\ 0889# that with probability equal to 0

dimH VH"x# � dimB VH"x# � 1−H[

The auto!correlation function is one of the main tools for studying statistical models of rough
surfaces[ The auto!correlation function R"d# of the pro_le is
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R"d# � lim
T:�

0
1T g

T

−T

ðz"x¦d#−z¹Ł ðz"x#−z¹Ł dx � ððz"x¦d#−z¹Ł ðz"x#−z¹ŁŁ

or

R"d# � lim
T:�

0
1T g

T

−T

z"x¦d#z"x# dx−"z¹#1

where z¹ is the average value of the pro_le function z"x#

z¹ � lim
T:�

0
1T g

T

−T

z"x# dx[

Another tool for the characterization of surfaces is the spectral density function G"v#\ which is
the Fourier transform of R"d#\ i[e[\

G"v# �
1
p g

�

9

R"d# cos vd dd and R"d# � g
�

9

G"v# cos vd dv[

It is believed "see\ e[g[\ Falconer\ 0889# that

"i# if the auto!correlation function R"d# of the pro_le z"x# satis_es

R"9#−R"d# ½ d1"1−s#

then it is reasonable to expect that the box dimension of the graph z"x# is equal to s ðnote that one
can _nd R"9#−R"d# ½ d1H for the FBM de_ned by "6#Ł^
"ii# if the pro_le z"x# has spectral density

G"v# ½ 0:va "8#

then it is reasonable to expect that the box dimension of the graph z"x# is equal to "4−a#:1[

The above conclusions are valid for mathematical models of the pro_le\ for which the relation
1"1−s# � a−0 or a � 4−1s holds[ Usually\ it is assumed that the same conclusions concerning
the box dimension are valid for physical fractals as well[ An e}ective method for determining the
physical fractal dimension of a random structure is based on this idea[ It is shown that real surfaces
approximately satisfy the property "8# in wide range of scales "see\ e[g[\ Sayles and Thomas\ 0867^
Brown\ 0884#[ The exponent a varies typically between 0 and 2[

The moments mn of the spectral density G"v# provide a useful description of the surface
roughness

mn � g
�

v9

vnG"v# dv

where v9 � 1p:l9 is the wavenumber corresponding to the pro_le length l9[ It is possible to show
"see\ e[g[\ Brown\ 0884# that m9 is the variance of heights "rms height# of the surface\ m1 is the
variance of slopes "rms slope# and m3 is the variance of curvatures "rms curvature#[ This gives us
a connection with the standard engineering parameters[
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1[4[ Weierstrass type functions and modellin` of rou`h surfaces

A number of researchers have used the Weierstrass type functions for fractal modelling of
surface roughness "see\ e[g[\ Roques!Carmes et al[\ 0875^ Sun and Jaggard\ 0889^ Majumdar and
Tien\ 0889^ Majumdar and Bhushan\ 0889^ Borodich\ 0882^ Moreira et al[\ 0883^ Tricot et al[\
0883^ Lopez et al[\ 0884^ Blackmore and Zhou\ 0885#[

The real Weierstrass type function can be de_ned as

W"x^ p# � s
�

n�9

p−gnh"pnx#\ p × 0\ 9 ³ g ³ 0

where h is a bounded Ho�lder function of order greater than b[ The following complex generalisation
of the W"x^ p# was considered by Mandelbrot "0866#

W	 "x^ p# � s
�

n� −�

p−gn ð"0−eipnt# eiFnŁ\ p × 0\ 9 ³ g ³ 0

where Fn are arbitrary phases[
The Weierstrass type functions are continuous everywhere and di}erentiable nowhere[ In

addition\ their graphs are curves whose fractal dimension exceeds one[ Fractal properties of these
functions including the WeierstrassÐMandelbrot "WM# function C "Fig[ 0# and the TakagiÐ
Hopson function T

C"x^ p# � s
�

n� −�

p−gn"0−cos pnx#\ T"x^ p# � s
�

n� −�

p−gn b pnx−$pnx¦
0
1% b \

p × 0\ 9 ³ g ³ 0[ "09#

have been studied in numerous papers "see\ e[g[\ Mandelbrot\ 0866^ Berry and Lewis\ 0879^ Mauldin
and Williams\ 0875^ Falconer\ 0889^ Hu and Lau\ 0882#[ By direct calculations\ one may obtain

=W	 "x¦d^ p#−W	 "x^ p# = ½ dg

which is similar to the behaviour "7# of fractional Brownian motion[ The box dimension of the
Weierstrass function graphs is D � 1−g and it is believed "see\ e[g[\ Berry and Lewis\ 0879^
Falconer\ 0889# that their Hausdor} dimension is the same[ Currently\ the only known bounds
for the Hausdor} dimensions are obtained by Mauldin and Williams "0875#\ i[e[\

D−"c:log p# ¾ dimH graph C ¾ D

provided that p is large and constant c is large enough[
It is possible to calculate the spectral density of the WM function W	 "x^ p#

G"v# � s
�

n� −�

d"v−pn#

p1"1−D#n

where d is the Dirac delta[ Berry and Lewis "0879# suggested some arguments for approximating
this discrete spectral density by a continuous spectral density
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Fig[ 0[ Graph of the WeierstrassÐMandelbrot function C in the range 9 ¾ x ¾ 2^ p � 0[4\ g � 9[4[ The trend of the
function is ½xg[

GÞ"v# ½
0

v4−1D

whose exponent 4−1D is in agreement with "8# with respect to the box dimension[
The following truncated WM function

W	 0"x^ p# � A"D−0# s
�

n�n0

p"D−1#n cos 1ppnx\ "00#

is often used for fractal characterization of the surface topography "see\ e[g[\ Majumdar and Tien\
0889^ Majumdar and Bhushan\ 0889^ Lopez et al[\ 0884^ Wang and Komvopoulos\ 0884#[ Here n0

is an integer number\ which corresponds to the low cut!o} frequency of the pro_le\and A is the
so!called characteristic length scale of the pro_le[ The number n0 depends on the length L of the
sample and is given by pn0 � 0:L and the parameter A determines the position of the spectral
density along the log G axis[ It was stated that both parameters A and D of the function W0 are
scale!invariant characteristics of the roughness[ However\ the extensive experimental studies of
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this fractal characterization model showed that the values of parameters A and D are not unique
and depend on instruments or resolution of a given instrument "Bhushan\ 0884#[

Evidently\ the function C"x^ p# is not homogeneous[ Nevertheless\ it exhibits the following
property

C"pkx^ p# � pkgC"x^ p#\ k $ Z\

where Z is the set of all integers\ which looks similar to the de_nition of a homogeneous function
hd of degree d

hd"lx# � ldhd"x#\ [l × 9[

Thus\ the graph of the function C"x^ p# near any point x9 is repeated in scaling form near all points
pkx9\ k $ Z[ This scaling "self!a.ne# property was often attributed to fractal features of the graph[
However\ this discrete scaling property is the main property of the so!called parametric!homo!
geneous "PH# functions introduced by Borodich "0881\ 0883# which strictly satisfy the following
equation

bd"pkx^ p# � pkdbd"x^ p#\ k $ Z

where d is degree of homogeneity[ The graphs of these functions can be both continuous and
discontinuous\ they can also be smooth\ piecewise smooth\ with singular points of growth\ fractal\
non!fractal nowhere di}erentiable "Borodich\ 0884\ 0886#[ As examples of 0!dimensional fractal
PH!curves we can consider the graphs of functions b0 and b1 with degrees d � 0 and d � 1\
respectively "Figs 1 and 2#

b0"x^ p# � xb9"x^ p#\ b1"x^ p# � x1b9"x^ p#\ b9"x^ p# � x−gC"x^ p#[ "01#

Because of "5# these functions have the same Hausdor} dimension as the WM function C"x^ p#\
whose box!dimension is D[

The above examples "01# of PH!functions show that the trend of a function is not necessarily
connected to fractal dimension[ Indeed\ both function b0 and b1 have the same Hausdor} dimension[
However\ if we consider the trend of the functions then we get that b1 is a self!a.ne function with
the exponent H � 1 and b0 is a self!similar function[ Thus\ the common statement\ that the scaling
exponent H of self!a.ne fractals is always closely related to the fractal dimension\ is wrong[

Another consequence is that the WM function C"x^ p#\ which has trend C"x^ p# ½ x1−D\ can be
used only as an example of fractal pro_le and it cannot be considered as the general fractal
functional model for simulations of the rough surface pro_les[ The assumption that the WM
function represents the general fractal properties of rough pro_les can lead to wrong conclusions
concerning surface roughness parameters and their distributions[

2[ Multilevel hierarchical pro_le

In this section we present a new model of self!a.ne pro_le which can be used for roughness
description[ It has a hierarchical structure\ and we call it a multilevel pro_le[ The pro_le is
constructed using a certain recursion procedure[ Note that a number of classical fractals are created
in such a way[ Examples are the Cantor dust "the Cantor discontinuum#\ the von Koch curve\ the



F[M[ Borodich\ D[A[ Onishchenko:International Journal of Solids and Structures 25 "0888# 1474Ð15011485

Fig[ 1[ Graph of a PH!function b0 of degree d � 0 in the range 9¾ x ¾ 2^ p � 0[4\ g � 9[4[ The trend of the function is
½x[

Sierpinski carpet\ and the techniques of iterated function systems which were recently introduced
as a uni_ed way of generating a broad class of fractals "Barnsley and Demko\ 0874^ Barnsley\
0877#[

2[0[ Construction of multilevel pro_le

We denote the presented multilevel pro_le by F[ We construct it in a step!by!step manner "see
Fig[ 3#[ At every step i\ i � 0\ 1\ [ [ [ \ we add several rectangles "{blocks| Bi for further reference# to
the structure obtained at the previous step[ We will refer to these intermediate structures as i!th
generation prestructures and denote them by S "i#

0 [ The contours of the prestructures are in some
sense i!th iterations for the required multilevel pro_le F[ Thus\ the pro_le itself is the {contour| of
the _nal structure\ which includes the contributions given by all subsequent construction steps
beginning from the _rst one and continuing to ad in_nitum[ Note\ that under this iterative
construction some points can be temporarily included in the pro_le at one step and then be
removed from it at another step[

We will use the notation F in two senses\ namely "i# as a 1!D!region that we obtain in normal
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Fig[ 2[ Graph of the WeierstrassÐMandelbrot parabola b1 "after Borodich\ 0884# in the range 9¾ x ¾ 2^ p � 0[4\ g � 9[4[
The trend of the function is ½x1[

section of rough solid\ and "ii# as a 0!D!contour that is the boundary of the 1!D!region[ We will
analyse properties of both of them and will use the same name {pro_le F|[ We believe this cannot
result in any misunderstanding\ because the object will be uniquely de_ned by context[

Let us describe the construction procedure in detail[ With l9 as a base length of the pro_le\
consider a segment of length l9 located along an axis Ox with the point O in the middle "see Fig[
3#[ Let us take some value h9\ which we will connect later with the total height H� of the pro_le\
and consider a block B9 with length l9 and height h9[ This is an initial element for constructing our
structure\ but it itself is not included in it[ We will call this object and its values an initiator in
further references[ Then\ we _x two structural parameters of the model\ a and b such that

9 ³ a ³ 0:1\ 9 ³ b ³ 0[ "02#

At the _rst step of the construction\ we divide the segment l9 into three parts with lengths al9\
"0−1a#l9\ and al9\ correspondingly\ and set a block B0 of height h0 � bh9 and length "0−1a#l9 on
the middle part of the initial segment l9[ This primitive structure\ which contains only the block
B0\ is the prestructure of the order one or the _rst!generation prestructure[ Its contour is a
continuous broken line consisting of two vertical segments of length h0 and 20 � 2 horizontal
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Fig[ 3[ Step!by!step construction of the multilevel pro_le and its contour passing through true peaks after third "! ! !#
and _fth "*# iterations of the construction[

segments\ two of which having length al9 are located at the level z � 9\ while the third is located
at the top of the block B0 and\ hence\ has length equal to "0−1a#l9[ Note that the vertical segments
belong to the _nal contour[

Next we apply a similar operation to each of the three horizontal segments[ We set three blocks
B1 in the middle of these horizontal segments[ The heights of the blocks B1 are identical and are
equal to h1 � bh0[ However\ their lengths are not identical[ By construction\ we have the value
a"0−1a#l9 as length for the new left and right blocks and "0−1a#1l9 as the length for the lifted
middle block[ Thus\ the second!generation prestructure contains one block B0 of the _rst!order
and three second!order blocks B1[ The contour of this prestructure is a broken line consisting of
21 � nine horizontal segments\ as well as eight vertical segments^ two are of height h0 and the other
six are of height h1[ Note again that all vertical segments are part of the _nal pro_le[

Repeating the procedure in the same way\ we add at every step ni � 2i−0 blocks Bi of height

hi � bhi−0 � bih9\

where i is the number of the corresponding generation[ Thus\ we obtain for any m\ m � 0\ 1\ [ [ [ \
the m!th prestructure S "m#

0 that consists of blocks Bi\ i � 0\ [ [ [ \ m\ of which there are exactly ni

copies of each of them[ It is then evident that F 0 S "�#
0 [

The lengths of the blocks may di}er as we pointed out above[ However\ it is easy to prove that
in any case these lengths lie within the range ðail9\"0−1a#il9Ł[ Moreover\ we see that if a � 0:2\ all
the lengths coincide and are equal to

li � ali−0 � = = = � ail9[

Figure 3 shows an example of the pro_le construction when a � 0:2 and b � 9[571[ All blocks
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up to order _ve\ which form the prestructure S "4#
0 \ as shown in grey[ The vertical dashed segments

designate the rest of the _nal structure[ The heights of these segments are calculated as limits in
the in_nite construction procedure[ Thus\ their tops are points of the _nal contour\ i[e[\ they are
{true| peaks[

It follows from this observation that we have at least two opportunities for obtaining approxi!
mations to the _nal contour after ith iteration[ With such an approximation we may take either
"i# the contour of i!th prestructure\ or "ii# the line resulted by the consecutive connection of
neighbouring true peaks[ With this scheme "Fig[ 3#\ the latter is shown with dotted lines after the
third iteration and with solid lines after the _fth iteration[ By construction\ the two variants lead
to the same limit\ namely F[ Therefore\ both approximations can be used in the analysis of pro_le
properties[ For example\ the former is very convenient for the calculation of geometric parameters\
while the latter looks quite attractive from the viewpoint of a possible graphic roughness simulation[

2[1[ Geometric characteristics and properties of the pro_le

Let us study now some geometric properties of the pro_le[ In the calculation we will use the sign
{0| as identity by de_nition[

2[1[0[ Calculation of the hei`hts of structural parts of the pro_le
Here we calculate the heights of some structural parts involved in the construction of the pro_le[
First\ we determine the height H "m#

0 of an m!th order prestructure\ denoting by H"=# the height
of the object in the brackets]

H "m#
0 0 H"S "m#

0 # � s
m

j�0

hj � s
m

j�0

H"Bj# � b
0−bm

0−b
h9\ m � 0\ 1\ [ [ [ [ "03#

Hence\ we obtain the maximal height "H�# of the pro_le as

H� 0 H "�#
0 0 H"F# � s

�

j�0

hj �
b

0−b
h9[ "04#

This gives us the relation between the height H� of the pro_le and the height h9 of the initiator[
Further\ let us denote by Fj\ j � 0\ 1\ [ [ [ \ the substructures of F\ where every Fj rests on the

block Bj−0 located along the central axis Ox[ Each Fj can be obtained by applying exactly the same
construction procedure as above[ Evidently\ di}erent initiators should be used[ For convenience\
we will use the notation F0 for F as well[ It will be shown below that Fj can be treated as scaled
copies of F[

To _nd the height of Fi we need _rst to _nd the height H "m#
i of the prestructure resting on the

block Bi−0

H "m#
i 0 H"S "m#

i # � s
m

j�i

hj � bi 0−bm

0−b
h9\ i � 0\ 1\ [ [ [ ^ m � 0\ 1\ [ [ [ [ "05#

Since Fi is the _nal structure obtained from S "m#
i as m : �\ its height H "�#

i may be found from
"05# as
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H�
i 0 H"Fi# �

bi

0−b
h9\ i � 0\ 1\ [ [ [ "06#

which may be rewritten in the following form

H "�#
i¦0 � bH "�#

i \ i � 0\ 1\ [ [ [ [ "07#

Obviously\ we also have

H "�#
i � bi−0H "�#

0 \ i � 0\ 1\ [ [ [ [ "08#

2[1[1[ Self!similar and self!af_ne properties of the multilevel pro_le
In this subsection we reveal certain features of self!similarity and self!a.nity of the pro_le[ First\

it can be easily seen that for any integer m\ m × 9 the structure F if treated as a {jigsaw puzzle|
can be formed as a union of the prestructure S "m#

0 and a set of scaled copies Fm¦0 of the entire
structure F\ where the substructures Fm¦0 are {installed| on the tops of m!th order blocks\ as well
as just near them\ symmetrically on the left and on the right[ In fact\ the values of the initiators
for F are multipliers with respect to the lengths and heights of all blocks that form the substruc!
tures[ Hence\ using certain factors\ we can equalise the initiators of any substructure and the whole
structure F[ Doing so\ we automatically obtain the same factors for all corresponding blocks[
This means that the substructure is similar to the F from the viewpoint of a.nity[

To be more precise\ we may assert that every copy Fm¦0\ m � 0\ 1\ [ [ [ \ may be generated from
the whole structure F 0 F0 by applying a certain scale factor sv in the vertical direction\ which will
be called the v!factor\ and another scale factor sh in the horizontal direction\ which will be called
the h!factor[ In such a case we write\ by convention

Fm¦0 ½"sh\ sv#F0[ "19#

By construction\ we have the common v!factor for all members of the set "Fm¦0#

sv � bm\ "10#

while the h!factors are di}erent in the general case\ i[e[\ when a � 0:2\ and are given by the
following relations

sh � am−j"0−1a#j\ j � 9\ 0\ [ [ [ \ m[ "11#

Note\ that all members of the set "Fm¦0# are of the same shape and size only when

a � 0:2[ "12#

In this case\ the h!factors "11# are

sh �"0:2#m\ "13#

for Fm¦0\ m � 0\ 1\ [ [ [ [
Thus\ if "12# does not hold\ the set "Fm¦0# contains scaled copies of F with various scale factors[

For example\ all substructures Fj\ j � 1\ 2\ [ [ [ \ which are located along the central axis Oz\ have
the following h!factors]

sh �"0−1a# j−0
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and those\ which are located symmetrically at the left and right ends of the initial segment l9\ have
the h!factors

sh � a j−0[

Recall now Mandelbrot|s de_nition "0872# that a bounded set S on a plane is said to be self!
a.ne with respect to a ratio vector "sh\ sv# is S is a union of N non!overlapping subsets S0\ [ [ [ \ SN

such that they all are scaled copies of the S[
Obviously\ the structure F is not self!a.ne in the sense of this de_nition\ and furthermore it is

not even self!similar in the {very regular| case a � b � 0:2\ because to collect the whole structure\
except scaled copies Fk we need additional blocks Bi[ However\ we see that {principal| parts of the
F\ namely\ substructures Fm are exactly scaled copies of F[ Moreover\ it is easy to show that if
we slightly modify the structure\ building it downward ad in_nitum by an extrapolation procedure\
then this new unbounded structure F
 can be considered to be self!a.ne with respect to a scale
vector "0−1a\ b# according to the usual geometric notion of a.ne transformation

F
 ½"0−1a\ b#F
 [ "14#

Note that F
 includes as its parts Fi\ i � [ [ [ \ 1\ 0\ 9\ −0\ [ [ [ [
Evidently\ the similarity features can be useful for the analysis of geometric properties of the

structure\ and below we give some examples in which we employ this property[ The _rst immediate
corollary of self!a.nity is the following relation

V"Fi¦0# � abV"Fi#\ i � 0\ [ [ [ "15#

where for a given j the most left "the most right# among all "Fj# should be substituted into "15#[
Here we have denoted by V"=# the area bounded by the contour of a structure in brackets[

Note that relation "15# can be called a renormalization group "RG# relation because it connects
values of a certain characteristic "an area here# of the pro_le for adjacent scale levels of con!
sideration and is invariant with regard to scaling " for details see Borodich and Onishchenko\
0886#[

2[1[2[ Behaviour of the hei`hts of the substructures Fi for different i
In problems of contact between rough surfaces\ it is important to characterize the tops of highest

asperities "see\ e[g[\ Borodich and Onishchenko\ 0882#[ Therefore\ the question arises whether only
the central {column| of our pro_le is involved with the contact or will other substructures also
contribute to it<

To answer this question\ consider the relation between the heights of the structures Fi[ It follows
from "08# that for arbitrarily large integer k\ we always can choose b near one such that the values
H "�#

1 \ H "�#
2 \ [ [ [ \ H "�#

k are near the level H�[ This means that by {tuning| b we may obtain an
arbitrary number of asperities of the pro_le with approximately equal heights[

It is useful to compare the heights of scaled copies of the structure with the heights of its m!th
generations[ It follows from "03# and "05# that if the following inequalities hold
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b
0−bk−0

0−b
h9 ³

b1

0−b
h9 ¾ b

0−bk

0−b
h9 "16#

or\ after division by a common factor

0−bk−0 ³ b ¾ 0−bk "17#

then the peak "top point# of F1 lies in the gap between the tops of the prestructures of generations
k−0 and k[ We can write this in such a form

H"S "k−0#
0 # ³ H"F1# ¾ H"S "k#

0 #[ "18#

Consider now the case of equality in "17#\ i[e[\ b � 0−bk and rewrite this as

bk � 0−b[ "29#

It follows then from "18# that

H"F1# � H"S "k#
0 #[ "20#

In other words\ the height of the second!order structure F1 is equal to the height of the k!th
prestructure S "k#

0 [

2[1[3[ Volumes of the structures Fi

Let us now calculate the volumes per unit depth\ or areas of the structures Fi\ i � 0\ 1\ [ [ [ \ for
the case a � 0:2[ First\ due to the scaling property "19# and using "10# and "13#\ we obtain

V"Fi# �"ab#i−0V"F0# "21#

and\ in particular\ for i � 1

V"F1# � abV"F0#[

On the other hand\ by construction "see Fig[ 4#

V"F0# � V"B0#¦2V"F1#[

Whence\ using notation

Vi 0 V"Fi#^ v9 0 V"B9# � l9h9

we _nd that

V1 �
"ab#1

0−2ab
v9

and\ consequently\ that

V0 �
ab

0−2ab
v9^ i � 0\ 1\ [ [ [ [ "22#

It follows from "21# that
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Fig[ 4[ Geometrical scaling relations between various structural parts of the multilevel pro_le^ a � 0:2\ b � 9[571[

Vi �"ab#i−0V0[

Taking a � 0:2\ we _nally obtain

Vi 0 V"Fi# �"b:2#i−0V0 "23#

where V0 is given by "22#[

2[2[ Fractal dimension of the pro_le

Throughout what follows\ we consider only the case a � 0:2 unless otherwise is stipulated\ using
the notation a for the sake of convenience only[ Keeping in mind that the {length| of a fractal line
has to be in_nite\ let us calculate the contour length L"m# of m!prestructure S "m#

0 [ As we know from
the above\ S "m#

0 consists of blocks Bi\ i � 0\ [ [ [ \ m\ and there are exactly ni � 2i−0 copies of each of
them[ The contour L"m# is the union of horizontal and vertical segments[ The sum of the lengths of
all horizontal segments is equal to l9[ The vertical segments forming the contour are the vertical
sides of the blocks Bi[ Therefore\

L"m# � l9¦ s
m

i�0

1nihi[

By simple calculations\ we obtain

L"m# � 6
l9¦1bh9 ð0−"2b#mŁ:"0−2b#\ b � 0:2

l9¦1bmh9\ b � 0:2[
"24#
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We see that the contour length of prestructures is limited when b ³ 0:2 and is unlimited "diverges#
in the opposite case[ Moreover\ when

b × 0:2 "25#

the contour length tends to in_nity in accordance with the power law[ Thus\ only in case "25# we
have some reasons to assume the multilevel self!a.ne pro_le to be fractal[

Now we will try {to measure| the length of the contour of the structure F using dividers with
continually reduced openings[ Let d � li � ail9 be the opening of the dividers[ Following the
engineering approach "the Richardson method#\ we calculate the number of dividers steps\ when
{walking| along all the contour of the prestructure\ with dependence on the prestructure order m
and then express the contour length "24# by means of d[ It can be easily seen under restriction "25#
that

L"m# ½ C"d:l9#−d�\ where d� �
ln"2b#
ln"0:a#

and C is a certain const[ So\ the value

DR � 0¦d� � 0¦
ln"2b#
ln"0:a#

can be considered as the Richardson dimension of the structure F[ For a � 0:2 we get

DR � 1−
ln"0:b#
ln"2#

[

Next we determine the fractal box dimension DB of the pro_le F[ Let us recall that we consider
the case a � 0:2[ The box dimension may be found from relation "4#\ where N"d# denotes the
number of the non!overlapping squares "boxes# d×d that jointly cover all the contour[

We consider the entire structure F 0 S "�#
0 as the union of the prestructure S "m−0#

0 and its scaled
copies Fm of order m[ The number of the latter copies equals nm[ Take d as

d � lm¦0[ "26#

Evidently\ the contour of the whole structure F is covered if we cover both vertical parts of the
prestructure boundary and all the scaled substructures[ To cover the former we need\ in excess\

n0 � s
m

j�0

1nj−0 0
hj

d
¦01½ C0"8b#m "27#

boxes[ Then to cover the latter we need\ also in excess\

n1 � nm 0
Hm¦0

d
¦01½ C1"8b#m

boxes[ Finally\ we obtain

N"d# � n0¦n1 ½ C2"8b#m[

Taking into account "26#\ we obtain that "4# holds with
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DB � 1−
ln"0:b#
ln"2#

"28#

which coincides with the value DR[
Since the number n0 "27# is\ in fact\ a lower bound for the adequate number of the boxes to

cover all the structure F\ we obtain that "28# is the exact value for the box dimension dimB F for
the pro_le F[ We see that DB : 0 as b : 0:2\ and DB : 1 as b : 0[ Note that it is not di.cult to
show that the pro_le box dimension DB is one when b ¾ 0:2[

2[3[ Upper volume curve and bearin` curve

There are a lot of engineering parameters which are used for roughness characterization "Green!
wood\ 0881#[ Therefore\ it is important to calculate and analyse similar characteristics for math!
ematical models describing roughness[

At any _nite construction iteration m\ when m is large enough\ the contour is a very irregular
but also a very simple curve at the same time[ Indeed\ it is a broken line with only right angles[ In
this situation\ both analytical and numerical calculations of the various geometric parameters
should not be di.cult[ Some results of these calculations will be presented in further publications[
In this paper\ we give an example of constructing two functions characterizing roughness of the
multilevel pro_le[ The _rst of them is a function which has a value at a point z\ 9 ¾ z ¾ H� that is
equal to the area "the volume in 2!D problem# of that part of the pro_le which lies above a
horizontal slice at the level z[ We will refer to the graph of this function as the {upper volume|
curve[ Another function is called the bearing area "Abbot# curve[ Its value at a point z is equal to
the length "the area in 2!D problem# of the slice of the pro_le at the level z "Greenwood\ 0881#[

For convenience\ we introduce another vertical axis O0y\ which is directed downwards and has
its origin at the point O0 coinciding with the top of the structure F "Fig[ 4#[ Obviously\ for the
points of the pro_le\ we have 9 ¾ y ¾ H�[ We denote by V"y# the values of the upper volume
function and by A"y# the values of the bearing curve[

We restrict ourselves with the case when b satis_es the relation "29# for certain k − 0[ It is not
di.cult to show\ using the self!a.nity property "14# provided a � 0:2\ that the following scaling
relation holds

V"F^ by# �"b:2#V"F^ y# "39#

for all y such that

y ¾ yk � H�−"h0¦= = =¦hk#[

The last condition is caused by the necessity to avoid the in~uence of the second!order {asperities|
F1\ which are located symmetrically on the left and on the right from the central column\ on the
characteristics of the _rst!order asperity F[ Let us recall that due to "20# the height of the F1 is
exactly the value h0¦= = =¦hk for the case under consideration "see Fig[ 4\ where k � 2#[

Denote by yi\ i � 0\ 1\ [ [ [ the distances from the tops of i!th order prestructures to the top of the
pro_le
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yi � H�−H "i#
0 � biH� "30#

where "04# and "03# have been used[ Further\ if we take a constant CV such that

CV �
V"F^ yk#
"b:2#kV0

then using "39# and "30# we obtain

V"F^ yi# � CV"b:2#iV0\ i � k\ k¦0\ [ [ [ [ "31#

It follows from this relation that

V"yi# � CVV0 0
yi

H�1
g

\ i � k\ k¦0\ [ [ [ "32#

where

g � 0¦
ln"2#

ln"0:b#
\ bk � 0−b[

For example\ with the cases k � 0\ 1\ 2 the exponent g equals 1[47\ 2[17 and 2[76\ respectively[
Evidently\ the {spline|

V"y# � CVV0 0
y

H�1
g

"33#

is quite appropriate in the considered case[ However\ it should be emphasized that we have proved
"32# only for the discrete set "yi\ i � k\ k¦0\ [ [ [# of argument values[ This yields that for other
argument values\ relation "32# should be treated as approximate unless otherwise proved[

With regard to the constant CV of "33#\ it must be noted that it is possible to _nd it analytically
for small values of k by some direct manipulation of the pro_le|s structural parts as if they were
parts of a rather complicated jigsaw puzzle\ and using in addition the self!a.nity properties "see
Borodich and Onishchenko\ 0886#[ However\ we could not _nd any general algorithms for such
manipulation when k in "29# is arbitrary[ It seems more di.cult to _nd CV analytically in the case
when "29# does not hold for any integer k[

Nevertheless\ CV can be easily computed with the help of any suitable algorithm taking into
account the regular structure of the pro_le F[ One of the possible algorithms is described below[

With regards to the bearing curve\ evidently\ we have

dV"y# � A"y#dy "34#

where dV and dy are increments of the corresponding variables[ If the function V"y# were di}er!
entiable\ we could _nd A"y# as the derivative of V"y#[ However\ _rstly\ this point is a rather
questionable a priori and\ secondly\ even if it were so\ we do not have an analytical form for the
function V"y#[

It should be mentioned that in principal\ one could calculate analytically the values of the
function A"y# in a way similar to that as we employed above with respect to the upper volume
function[ However\ keeping in mind our intention to present techniques suitable for analysing the
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pro_le in a general case\ i[e[\ for an arbitrary value of scaling factor b\ we prefer to describe how
a relevant algorithm that allows us to calculate numerically the values of both functions A"y# and
V"y#[

The main idea is to analyse prestructures of the multilevel pro_le rather than the _nal multilevel
pro_le itself giving the necessary estimations of the accuracy[ Let S "m#

0 be a prestructure of the m!
th order\ provided m\ m × 0 is the number of the _nal iteration for the prestructure construction[
Consider the base segment l9 and points x on it such that

x � i0"0:2#0¦i1"0:2#1¦= = =¦im"0:2#m "35#

where ij � 9 or ij � 0 for all j[ Here we suppose that the point x � 9 corresponds to the left end of
the base[ Note that N � 2m is the total number of points given by "35#[

As we already mentioned above\ the contour of this prestructure is a broken stepwise line
consisting of 2m horizontal segments of equal length\ as well as a certain amount of vertical
segments of easily calculated heights[ Under a given value y corresponding to the level of the slice\
we use item!by!item examination of points from "35#[ Thus\ we have for a current point x the
condition of {going down|\ i[e[\ when we reach the end of a local asperity slice\ we add the easily
calculated relevant amounts to the previously accumulated values for the functions A"y# and V"y#
correspondingly[

It should be mentioned that by using relation "23# we could take into account not only the
volumes of the upper parts of the sliced blocks\ but also the scaled copies Fj supported by these j!
th order blocks\ where j\ j � 1\ [ [ [ \ m[ However\ in order to obtain a simple error estimation\ we
deal here with the prestructures only[ Therefore\ using this algorithm for computation\ we exclude
from our consideration all blocks of order higher than m\ i[e[\ all blocks Bi with i × m[

It can be easily checked that the prestructure S "m#
0 di}ers from the structure F by the totality of

scaled copies Fm¦0[ The number of these copies is 2m[ Using "23# we obtain the value

e"m# � 2mV"Fm¦0# �"b#mV"F0#

as the maximal possible error for the upper volume function[
Because e"m# : 9 as m : � provided b ³ 0\ we may assert that the algorithm described is quite

suitable for numerical calculation of the function V"z#[ Of course\ due to the limited capacities of
the computer we will meet speci_c problems when b is very close to one[ De_nitely\ this is a special
case requiring a special approach[

The analytical estimation of the calculation error in the case of the bearing curve is not as
straightforward as for the upper volume function[ However\ it may be obtained directly from the
calculations[ We may compare the computed values of the bearing curve obtained with increasing
m and roughly estimate the error by the di}erence between values obtained at subsequent iterations[

As an example\ we give the computational results for the case b � 9[571 ðk � 2 in the relation
"29#Ł[ We carried out the calculations up to m � 02\ that is for the prestructure of 02th!order[ The
number of calculation points z determining slice levels is equal to 499[ The graphs are presented
in Fig[ 5[ Note that any visual distinctions between successive iterations disappear as soon as
m � 8\ with the exception of the A"z# function graphs for the small z range\ where the theoretical
value of the A"z# must be equal to 9[ However\ this part of the bearing curve is not important for
the application to contact problems[
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Fig[ 5[ The bearing curve A"z# "*# and the upper volume curve V"z# "! ! !# for the multilevel pro_le^ a � 0:2\ b � 9[571[

We see that the graph of the V"z# is reasonably smooth\ whilst the A"z# graph is very {rough|\
and if turned at an angle of 89>\ looks similar to the so!called Cantor staircase*a curve which is
almost everywhere horizontal\ but has in_nitely many in_nitesimal vertical jumps[ Of course\ a
more thorough analysis should be carried out\ including the estimation of the possible in~uence
of the numerical algorithm itself[ Moreover\ it would be very interesting to analyse relation "34#
in a numerical way[

The computation time for the calculation of the coordinate of points of the graphs was about
09 min on a 375!DX1 PC[ We expect a substantial reduction in the computation time for a desired
accuracy\ using re_ned algorithms[

3[ Discussion and conclusion

Mandelbrot "0872# noted that natural objects do not have pure shapes of classical mathematical
objects*for example\ coastlines are not circles\ clouds are not spheres\ and mountains are not
cones[ We can add to this list a statement that {roughness of real bodies is not a mathematical
fractal|[ All these geometrical objects] spheres\ cones\ circles as well as fractals are only math!
ematical idealizations of complex shapes of real physical bodies[ We have to use di}erent math!
ematical models to describe the same object on di}erent scales[ For example\ to describe a
nominally ~at rough surface\ one could use sequentially the model of a plain\ the model of a
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collection of spherical asperities and the model of a fractal surface depending on chosen mag!
ni_cation[

The _rst two models are customary\ while the idea to use models of fractal surfaces for describing
natural bodies has been developed only recently\ after Mandelbrot published his papers[ However\
we have seen above that the employment of the fractal approach in the study of surfaces has
several drawbacks[ We list only several of them]

"i# It is often unclear how we can use results obtained for mathematical fractals in applications
to physical fractals[

"ii# Various methods of determination of fractal dimension of real surfaces sometimes give rather
di}erent results\ while mathematically these methods must be equivalent to each other[ To
check the accuracy of the methods\ curves with analytically calculated dimensions are used
"Dubuc et al[\ 0878^ Tricot et al[\ 0883^ Talibuddin and Runt\ 0883#[

"iii# It is known that the WM function C ðsee Fig[ 0 and "09#Ł has trend ½x1−D^ therefore\ the use
of this function as the standard model for the simulations of the rough surface pro_les can
lead to wrong conclusions concerning surface parameters and their distributions[

The existence of fractal behaviour in physical systems is reported so often that one can speak
about {fractals everywhere| "see\ e[g[\ Barnsley\ 0877#[ The question {{Why are fractals so common
in Nature<|| was recently studied by Avnir et al[ "0886#[ Their extended analysis of published data\
in particular concerning rough surfaces\ shows that the overwhelming majority of reported physical
fractals span approximately 0[4 orders of magnitude[ To give a possible interpretation for this
observation\ they considered various pure random numerical models\ for example\ a model in
which rods of some speci_c length are randomly placed on the unit interval[ It is shown that the
characteristic relation "4# holds for the structures generated in their random models approximately
over the over the above physically meaningful range[ They point out that such properties of
random structures can be attributed to apparent fractality[ Finding that randomness obeys the
dilation similarity\ they conclude that {fractals everywhere| may be caused by {randomness every!
where|[

These results "Avnir et al[\ 0886# support the idea that the bounded similarity of surface pro_le
structure can be a crucial feature for roughness[ It means\ in fact\ that prefractals are more
appropriate for roughness studies than mathematical fractals[ We propose to study such a similarity
on iteratively generated rough pro_les which can be fractal only in the mathematical limit with
respect to the number of construction iterations[

It should be emphasized that such models do not necessarily generate fractals[ The multilevel
pro_le presented in the paper is not a fractal for some values of the parameters\ e[g[\ when a � 0:2\
9 ³ b ³ 0:2[ However\ it remains rough and possesses certain self!a.ne properties[

This new multilevel pro_le model is suitable for the ~exible modelling of roughness[ It can be
easily simulated and drawn\ which is important for visual analysis[ The pro_le|s {design| points
can be either determined analytically or computed using any straightforward algorithm[ We have
given an example of such a simulation and analysed both analytically and numerically its geo!
metrical properties[ In addition\ we have presented an example of the calculation and construction
of the bearing curve and the upper volume function of the pro_le[ These characteristics can be
directly used in the problem of contact between a punch and an elastic foundation "see\ e[g[\
Johnson\ 0874^ Borodich and Mosolov\ 0880\ 0881^ Borodich and Onishchenko\ 0882#[
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With regards to the fractal dimension of the pro_le\ it would be very interesting to apply the
variation method as discussed by Dubuc et al[ "0878# to the digitized data of our model and
compare the result with the analytical results given in Section 2[2[ We intend to ful_l this in our
next paper[

It seems to us that one of the most bene_cial properties of the pro_le is its iterative regular
construction\ which allows us to analyse its prestructures "prefractals# of any generation[ Moreover\
we believe that the standard engineering parameters and functions used for the characterization
of rough surfaces can be also calculated for the pro_le in an e.cient way[ The pro_le F is de_ned
by four structural parameters\ namely the basic length l9\ the height of the pro_le H�\ and the
scaling parameters a and b\ satisfying the restrictions given in "02#[ Therefore\ the model can be
tuned for comparison with various experimental data[
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